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In this supplementary material we provide

A. Single-outbreak (SIR) model for Norovirus;

B. Extended numerical results of the SIRS model for Norovirus;

C. Taylor series approximation of the population-level relative substitution rate Kc for c� 1;

D. Extended numerical results of the SIRS model for Norovirus.

E. Extended results of the sensitivity analysis of the SIRS model and SIR model for Norovirus.

A Single-outbreak model for Norovirus

In this model we assume that the outbreak occurs on a time scale much faster than the loss of immunity so
that θ = θc = 0. In this case the dynamics are governed by the following system of equations,

dI

dt
=
βS

N
(I + Ic(1− q))− γI,

dR

dt
= γI,

dIc
dt

=
βcSc
N

(1− q) (I + Ic(1− q))− γcIc,

dRc
dt

= γcIc. (A.1)

This model can be rescaled to,

di

dτ
=
β(1− c)

γ
(1− i− r)

(
i+ ic

(1− q)c
1− c

)
− i,

dr

dτ
= i,

dic
dτ

=
γc
γ

(
βcc

γc
(1− q)2(1− ic − rc)

(
i

1− c
c(1− q)

+ ic

)
− ic

)
,

drc
dτ

=
γc
γ
ic. (A.2)

Here, I = i(1− c)N , R = r(1− c)N , S = (1− i− r)(1− c)N , Ic = iccN , Rc = rccN , Sc = (1− ic − rc)cN ,
t = τ/γ.
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B Calculation of R0 of the SIRS model for Norovirus

Basic reproductive number. Consider the SIRS model for Norovirus

dI

dt
=
βS

N
(I + Ic(1− q))− γI,

dR

dt
= γI − θR,

dIc
dt

=
βcSc
N

(1− q) (I + Ic(1− q))− γcIc,

dRc
dt

= γcIc − θcRc. (B.1)

The next generation method [1] is used to derive the basic reproductive number R0. This technique is
suitable for models where there are more than one class of infectives. Following the method outlined in [1],
we define F to be the rate of appearance of new infections in the general population, and Fc to be the
rate of appearance of new infections in the immunocompromised population when the population is wholly
susceptible so that

F = β(1− c)(I + (1− q)Ic)
Fc = βcc(1− q)(I + (1− q)Ic).

We also define
V := V − − V +,

where V + is the rate of transfer of infections into the general population by all other means and V − is the
rate of transfer of infections out of the general population. Similarly, we define

Vc := V −
c − V +

c ,

where V +
c is the rate of transfer of infections into the immunocompromised population by all other means

and V −
c is the rate of transfer of infections out of the immunocompromised population so that

V = γI

Vc = γcIc.

We form the next generation matrix operator FV−1 from the matrices of partial derivatives of F , Fc, V and
Vc:

F =

[
∂IF ∂IcF
∂IFc ∂IcFc

]
=

[
β(1− c) β(1− q)(1− c)
cβc(1− q) cβc(1− q)2

]
,

V =

[
∂IV ∂IcV
∂IVc ∂IcVc

]
=

[
γ 0
0 γc

]
,

and then calculate R0 as the largest eigenvalue of the matrix FV−1. We find that

R0 =
(1− c)β

γ
+
c(1− q)2βc

γc
. (B.2)

For c� 1, R0 ≈ β
γ .
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C Taylor series approximation of the population-level relative substitution rate at endemic
equilibrium Kc

Consider the system of equations (B.1). We set each equation in (B.1) to zero to solve for the endemic
equilibrium solutions (Î , R̂, Îc, R̂c) such that Î > 0 and Îc > 0. We do not reproduce the analytical expressions
of these solutions here due to their size. However, they can be easily obtained using Mathematica.

We are interested in the population-level relative substitution rate at endemic equilibrium Kc which
depends on these equilibrium solution according to

Kc =

(
kc
k

)(
Îc

Î

)
. (C.1)

The proportion of immunocompromised hosts c is assumed to be small. Therefore we seek a Taylor series
expansion of Kc around the point c = 0 to approximate the solution for c � 1. Using Mathematica it can
be shown that

Kc =

(
kc
k

)(
Îc

Î

)
=

(
kc
k

){
cββcθc(1− q)(γ + θ)

(θc + γc)βc(1− q)θ(β − γ) + βγcθc(γ + θ)
+O(c2)

}

= c

(
kc
k

)((
1− γ

β

)( γc
θc

+ 1
γ
θ + 1

+
γc

βc(1− q)

))−1

+O(c2). (C.2)

Therefore, the linear approximation for Kc around c = 0 is

Kc ≈ c
(
kc
k

)((
1− γ

β

)( γc
θc

+ 1
γ
θ + 1

+
γc

βc(1− q)

))−1

. (C.3)

This approximation and the full numerical solution of Kc as a function of c are shown in Figure C.1 for
one set of parameter values. The linear approximation is clearly close to the full solution for values of the
proportion of immunocompromised hosts c up to around 0.03.

From Equation (C.3), it is clear that for small c, Kc increases when either βc(1− q)/γc or θc/γc increase,
and Kc decreases when either β/γ or θ/γ increase. Hence, the population-level relative substitution rate
at endemic equilibrium will increase if the mean number of secondary infections caused by an infective
immunocompromised host (βc(1− q)/γc) increases, the infection duration of infective immunocompromised
hosts (1/γc) increases, the duration of immunity for immunocompromised hosts (1/θc) decreases, the mean
number of secondary infections caused by an infective general host (β/γ) decreases, the infection duration
of infective general hosts (1/γ) decreases, or the duration of immunity for general hosts (1/θ) increases.
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Figure C.1: The population-level relative substitution rate at endemic equilibrium Kc as a
function of the proportion of immunocompromised hosts c. The blue line indicates the full numerical
solution for Kc, and the green line is the linear approximation of Kc for c� 1. Here, kc/k = 1, β = 1.64/7,
βc = 1.2β, q = 0.5, N = 1000, γ = 1/7, γc = 1/31, θ = 1/(5× 365), θc = 1/(0.5× 365).

D Extended numerical results of the SIRS model for Norovirus.

Figure D.1: Extended numerical results for SIRS model for norovirus. The relative substitution rate (at

the population level) in the immunocompromised population versus the general population Kc when kc/k = 5 and

N = 106. (a) R0 = 1.64, 1/θc = 3 days, 1/γ = 7 days, c = 0.001, 1/θ = 3 years, k = 0.003, 1/γc ∈ [1/12, 1] years,

q ∈ [0, 1]; (b) R0 = 1.64, 1/γc = 12 months, 1/γ = 7 days, c = 0.001, 1/θc = 3 days, k = 0.003, 1/θ ∈ [2, 4] years,

q ∈ [0, 1]; (c) R0 = 1.64, 1/γc = 12 months, 1/γ = 7 days, c = 0.001, 1/θ = 3 years, k = 0.003, 1/θc ∈ [3 days, 3 years],

q ∈ [0, 1]. Pink diamonds represent the best estimates of the parameters in the parameter space considered. The

black lines correspond to the contours Kc = 0.1, 0.05, 0.01.
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E Extended results of the sensitivity analysis of the SIRS and SIR model for Norovirus.

Figure E.1: Parameter sample distributions used in the sensitivity analysis using the Latin Hypercubic

Sampling method. (a) The basic reproduction number (R0) was sampled from a triangular distribution with

mode 1.64, lower bound 1 and upper bound 4.5; (b) the general population substitution rate (k) was sampled

from a normal distribution with mean 0.003 and standard deviation 0.0003; (c) the proportion of the population

immunocompromised (c) was sampled from a log normal distribution of base 10 such that − log10 c ∼ N (3, 0.3); (d)

the duration of immunity for the general population (1/θ) was sampled from a triangular distribution with mode 3,

lower bound 2 and upper bound 4.

Figure E.2: Frequency distribution of the relative substitution rate (at the population level) in the
immunocompromised population versus the general population Kc from Latin Hypercubic Sampling of the
parameters space. (a)–(c) 1/γc = 1 month; (d)–(f) 1/γc = 12 months. (a),(d) q = 0.1; (b),(e) q = 0.5; (c),(f) q = 0.9.
In all cases 1/γ = 7 days, N = 106, 1/θc = 3 days, kc/k = 5.
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Figure E.3: The mean relative substitution rate (at the population level) in the immunocompromised
population versus the general population 〈Kc〉 from Latin Hypercubic Sampling of 1000 points in the parameters
space (R0, k, c, 1/θ) as a function of the duration of infection in immunocompromised hosts 1/γc, for a range of
values of the quarantine parameter q, and the ratio of substitution rates (at the individual host level) kc/k. (a) SIRS
model with 1/θc = 2 years and N = 106; (b) SIR model (θc = θ = 0) with N = 104. Blue lines with square markers
indicate kc/k = 10, red lines with diamond markers kc/k = 1, and black lines with circle markers kc/k = 0.1. Dotted
lines indicate q = 0.1, dashed lines q = 0.5 and solid lines q = 0.9. Here, 1/γ = 7 days.

Figure E.3 reveals that the SIRS model and SIR model behave similarly when the duration of immunity
for the immunocompromised population is large.
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